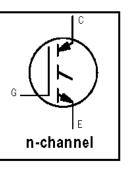
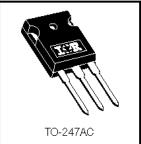
PD- 95230

International

IRG4PF50WPbF

INSULATED GATE BIPOLAR TRANSISTOR


Features


- Optimized for use in Welding and Switch-Mode Power Supply applications
- Industry benchmark switching losses improve efficiency of all power supply topologies
- 50% reduction of Eoff parameter
- Low IGBT conduction losses
- Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability
- Lead-Free

Benefits

- Lower switching losses allow more cost-effective operation and hence efficient replacement of largerdie MOSFETs up to 100kHz
- Of particular benefit in single-ended converters and Power Supplies 150W and higher
- Reduction in critical Eoff parameter due to minimal minority-carrier recombination coupled with low onstate losses allow maximum flexibility in device application

ADSOIULE MAXIMUM RALINGS

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	900	V
lc@Tc=25°C	Continuous Collector Current	51	
I _C @ T _C = 100°C	Continuous Collector Current	28	A
Ісм	Pulsed Collector Current 🛈	204	
I _{LM}	Clamped Inductive Load Current @	204	
V _{GE}	Gate-to-Emitter Voltage	± 20	V
E _{ARV}	Reverse Voltage Avalanche Energy 🕲	186	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W
P _D @ T _C = 100°C	Maximum Power Dissipation	78] "
Tj	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
Rejc	Junction-to-Case		0.64	
Recs	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
R _{eja}	Junction-to-Ambient, typical socket mount		40	
Wt	Weight	6 (0.21)		g (oz)

IRG4PF50WPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V(BR)CES	Collector-to-Emitter Breakdown Voltage	900	—		V	$V_{GE} = 0V$, $I_{C} = 250 \mu A$	
V(BR)ECS	Emitter-to-Collector Breakdown Voltage ④	18	—		V	$V_{GE} = 0V, I_{C} = 1.0A$	
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage		0.295	_	V/°C	$V_{GE} = 0V, I_{C} = 3.5 mA$	
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage		2.25	2.7	v	I _C = 28A	V _{GE} = 15V
			2.74	_		I _C = 60A	See Fig.2, 5
			2.12			l _c = 28A , T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	—	6.0		$V_{CE} = V_{GE}$, I _C = 250 μ A	
۵۷ _{GE(th)} /۵۲ _J	Temperature Coeff. of Threshold Voltage	—	-13	—	mV/°C	$V_{CE} = V_{GE}$, $I_C = 1.0 \text{mA}$	
9fe	Forward Transconductance ©	26	39	—	S	V _{CE} ≥ 15V, I _C = 28A	
lœs	Zero Gate Voltage Collector Current	—	—	500	μA	$V_{GE} = 0V, V_{CE} = 900V$	
'UES		—	—	2.0		$V_{GE} = 0V$, $V_{CE} = 10V$, T_{J}	=25°C
		—	—	5.0	mΑ	$V_{GE} = 0V, V_{CE} = 900V, T$	ั _ป = 150°C
IGES	Gate-to-Emitter Leakage Current	—	—	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

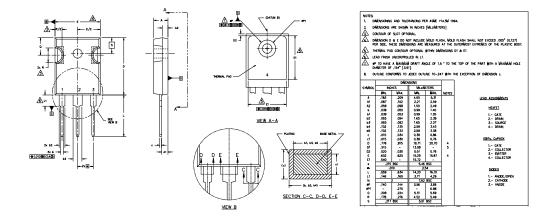
	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)	—	160	240		I _C = 28A	
Qge	Gate - Emitter Charge (turn-on)	—	19	29	nC	V _{CC} = 400V See Fig. 8	
Qgc	Gate - Collector Charge (turn-on)	—	53	80		V _{GE} = 15V	
t _{d(on)}	Turn-On Delay Time	—	29	—			
tr	Rise Time	—	26	—	ns	T _J = 25°C	
td(off)	Turn-Off Delay Time		110	170	113	I _C = 28A, V _{CC} = 720V	
tr	Fall Time	—	150	220		V _{GE} = 15V, R _G = 5.0Ω	
Eon	Turn-On Switching Loss		0.19	—		Energy losses include "tail"	
E _{off}	Turn-Off Switching Loss		1.06	—	mJ	See Fig. 10, 11, 13, 14	
Ets	Total Switching Loss	_	1.25	1.7			
t _{d(on)}	Turn-On Delay Time		28	—		T _J = 150°C,	
tr	Rise Time		26	—	ns	I _C = 28A, V _{CC} = 720V	
td(off)	Turn-Off Delay Time		280		113	V _{GE} = 15V, R _G = 5.0Ω	
ŧ	Fall Time	_	90	—		Energy losses include "tail"	
E _{ts}	Total Switching Loss		3.45	—	mJ	See Fig. 13, 14	
Le	Internal Emitter Inductance		13	—	nH	Measured 5mm from package	
Cies	Input Capacitance	—	3300	—		V _{GE} = 0V	
C _{oes}	Output Capacitance	—	200	—	рF	V _{CC} = 30V See Fig. 7	
Cres	Reverse Transfer Capacitance		45	—		f = 1.0MHz	

Notes:

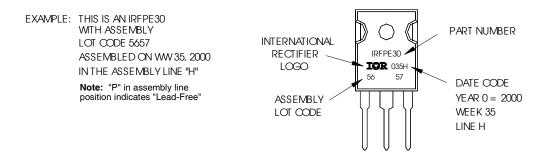
- \odot $\;$ Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- $\odot~V_{CC}$ = 80%(V_{CES}), V_{GE} = 20V, L = 10µH, R_G = 5.0Ω, (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- ④ Pulse width $\leq 80\mu$ s; duty factor $\leq 0.1\%$.

. .

S Pulse width 5.0µs, single shot.


2

IRG4PF50WPbF


International

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information

Data and specifications subject to change without notice.

International